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a b s t r a c t

Existing artificial compression based reinitialization approach for conservative level set method has
a few drawbacks, like distortion of fluid–fluid interface and formation of unphysical fluid patches
away from the interface. In this paper, a novel reinitialization approach has been presented which
circumvents these limitations by reformulating the existing reinitialization equation. The new reini-
tialization equation by design ensures that the interface contour is kept invariant under the action
of level set reinitialization. The unphysical patch formation away from the interface is also resolved
here by avoiding the use of ill-conditioned contour normal vectors. Owing to the use of much
simpler terms, a significant reduction in the numerical computations is achieved with the new
reinitialization equation. The new reinitialization equation also enables one to choose a larger time
step during the reinitialization iteration, leading to an overall reduction in computational efforts.
In order to evaluate the performance of the present formulation, a set of test problems involving
reinitialization of stationary level set functions is carried out first. Then, the efficacy of the proposed
reinitialization approach is demonstrated using a set of standard two-dimensional scalar advection
based test problems and incompressible two-phase flow problems. Finally, the ability to deal with
complex mesh types is demonstrated by solving a test problem on an unstructured mesh consisting
of finite volume cells having triangular and quadrilateral shapes.

© 2022 ElsevierMasson SAS. All rights reserved.
1. Introduction

Numerical simulation of incompressible two-phase flows poses
reat challenges due to the presence of the fluid–fluid inter-
ace. Popular contact capturing methods, such as, the Volume
f Fluid (VOF) method and the Level Set (LS) method, use an
dditional interface advection equation along with the incom-
ressible Navier–Stokes (NS) equations. Any inaccuracy in solving
he interface advection equation thus significantly affects the
uality of the numerical solution. Issues of the formation of
etsam/ floatsam in VOF method, violation of mass conservation
n LS method are a few examples associated with errors in the
omputation of the interface advection equation. In order to
vercome the mass conservation error in the classical LS method,
variant of the LS method, known as the Conservative Level

et (CLS) method, is proposed by Olsson and Kreiss [1] and
lsson et al. [2]. The enhanced mass conservation property is
chieved here by replacing the signed distance function used in
he classical level set method with a hyperbolic tangent type
evel set function. This level set function is then advected using

∗ Corresponding author.
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andal@aero.iitb.ac.in (J.C. Mandal).
ttps://doi.org/10.1016/j.euromechflu.2022.11.001
997-7546/© 2022 Elsevier Masson SAS. All rights reserved.
a scalar conservation law. In order to recover from the excessive
numerical dissipation error, an artificial compression based reini-
tialization procedure is also formulated for the level set function.
With the improved mass conservation property, the CLS method
shows promising capabilities and provides a good alternative to
the classical LS method in solving incompressible two-phase flow
problems. However, in practice, the reinitialization procedure for
the level set function in CLS method often runs into various
numerical difficulties, leading to undesirable results.

Primarily, two major issues with the reinitialization procedure
are reported in the literature [3–5]. The first one is the unde-
sired movement of the interface contour during reinitialization.
The problem gets further aggravated with the frequent use of
reinitialization. This issue arises particularly in two and three
dimensions, where, the interface curvature gets involved in the
computations. It is demonstrated in Refs. [3,6] that the degree
of movement of interface contour depends upon the strength
of the interface curvature. Also, a set of numerical experiments
presented in Ref. [4] verifies that the frequent use of reinitializa-
tion results in a substantial movement of the interface, leading
to inaccuracies in the numerical solution. Several attempts to re-
solve this issue can be found in literature [4,7]. Efforts are focused
mainly on localizing the reinitialization process only to a selected
region of the level set field. Excessive reinitialization at less

https://doi.org/10.1016/j.euromechflu.2022.11.001
https://www.elsevier.com/locate/ejmflu
http://www.elsevier.com/locate/ejmflu
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issipated regions is thus avoided. In Ref. [7], the reinitialization
s localized by defining a local coefficient based on the degree of
harpness of the level set function. Whereas, in Ref. [4], a metric
hich depends on the local flow conditions and the numerical
iffusion errors is used. It is, therefore, clear that these meth-
ds introduce additional complexity and computational efforts in
btaining the local coefficients.
The second issue with the reinitialization procedure is the

ormation of unphysical fluid patches away from the interface due
o the ill-conditioned (high sensitivity towards small changes in
he level set function) behaviour of the interface contour normal
ectors [8]. The contour normal vectors decide the direction of
he compression and diffusion fluxes during the reinitialization
rocess. Far away from the fluid–fluid interface these contour
ormal vectors become highly sensitive to the changes in the
evel set function. This results in a noisy vector field, leading
o undesirable compression at a far away region and formation
f unphysical fluid patches there. Several cures for this problem
an be found in literature [3,5,8–11]. In the Accurate Conserva-
ive Level Set (ACLS) method, proposed in Ref. [5], the contour
ormal vectors are computed from an auxiliary signed distance
unction. The auxiliary signed distance function is constructed
ere from the level set function using a fast marching method.
n the method proposed by Shukla et al. [3], a modified form of
he reinitialization equation is used. Here, the level set function
s replaced with a smooth function constructed from the level set
unction itself by employing a mapping procedure. A technique,
y combining the reinitialization schemes of both the classical
nd conservative level set method, named as Improved Conser-
ative Level Set (ICLS) Method, is reported in Ref. [9]. In Ref. [10],
reformulation of the original reinitialization equation which

akes care of the spurious movement of interface contour as well
s the ill-conditioned behaviour of the contour normal vectors
s presented. Later, in Ref. [11], two modifications are proposed
or the method given in [10] in order to make it applicable to
se while solving the level set advection equation using non-TVD
chemes. Recently in Ref. [8], the ill-conditioned unit contour nor-
al vectors are replaced with a different form of normal vectors,
uch that, the magnitudes of the normal vectors start to diminish
way from the interface. This ensures that the reinitialization
rocess is activated only near the interface regions. Though im-
rovements in the contour normal vectors partially circumvent
he issue of formation of unphysical fluid patches, they involve
olving additional equations adding to the overall computational
ost. A brief overview of some of the recent improvements in the
rtificial compression based reinitialization approach along with
heir reinitialization equations are provided in Appendix B.

In the present work, a much simpler technique to reinitialize
he level set function is presented. Here, the existing artificial
ompression based reinitialization equation is revised by isolating
nd removing terms that have potential to move the interface
ontours. The remaining terms in the modified equation are then
eformulated considerably, such that, the use of the contour nor-
al vectors is completely avoided. With the new approach, issues
uch as the distortion of the interface contour and the unphysical
atch formation away from the interface are resolved. In addition,
he absence of a viscous dissipation like (second derivative) term
n the new reinitialization equation enables one to choose a
uch larger time step during the reinitialization iteration. The
implified terms also help in significantly reducing the numerical
omputations per reinitialization time step, aiding an overall
eduction in computational efforts. In order to demonstrate the
fficacy of the proposed reinitialization scheme, a set of standard
wo-dimensional test problems involving reinitialization of sta-
ionary level set functions (henceforth, we name it as in-place

einitialization problems), advection of level set function under

41
predefined velocity fields and a few standard incompressible two-
phase flow problems are solved. Finally, in order to demonstrate
the ability to deal with complex mesh types, an incompressible
two-phase flow problem is solved on an unstructured mesh con-
sisting of finite volume cells having triangular and quadrilateral
shapes.

Rest of the paper is organized as follows. The original CLS
method and its reinitialization scheme is briefly described in
Section 2. The limitations of the existing artificial compression
based reinitialization approach and its new reformulation are also
discussed in the same section. In Section 3, the mathematical for-
mulation of incompressible two-phase flows is briefly described.
The numerical discretization of the governing equations and the
new reinitialization equation are also described in Section 3.
Several numerical test problems are solved in Section 4. Finally,
the conclusions are given in Section 5.

2. Conservative level set method

The fluid–fluid interface in the conservative level set method is
represented in the form of an iso-contour of a hyperbolic tangent
type level set function, defined as,

ψ(x, t) =
1

1 + exp
(

−φ(x,t)
ε

) ≡
1
2

(
tanh

(
φ(x, t)
2ε

)
+ 1

)
(1)

where, φ(x, t) is the standard signed distance function defined in
terms of the minimum distance d(x, t) from the interface, as,

φ(x, t) =

⎧⎨⎩
−d(x, t), inside the first fluid
0, at the fluid–fluid interface
+d(x, t), inside the second fluid

The function ψ takes a value 0 at regions occupied by the first
fluid and 1 at the second fluid. Within a thin transition region
between the two fluids, ψ varies smoothly from 0 to 1. Width of
the transition region is dictated by the parameter ε. The contour
corresponds to ψ(x, 0) = 0.5 represents the actual fluid–fluid
interface. The geometric parameters associated with the interface,
such as interface normal vector (n) and interface curvature (κ),
are obtained from the level set function as,

n =
∇ψ

|∇ψ |
(2)

κ = −∇ · n (3)

The movement of the fluid–fluid interface is achieved by ad-
vecting the level set function according to the flow field, as,

∂ψ

∂t
+ ∇ · (uψ) = 0 (4)

where, u = uî + vĵ, is the divergence-free velocity field.

2.1. Artificial compression based reinitialization procedure

It is well known that the level set function in the conserva-
tive level set method suffers from excessive dissipation due to
numerical errors [1]. This leads the level set function to deviate
from its original hyperbolic tangent type profile. An artificial
compression based reinitialization is developed in Ref. [2] in order
to re-establish the pre-specified thickness and the profile of the
level set function. The discretized level set advection equation
together with the reinitialization should satisfy the following
three requirements [1]. Firstly, the method should ensure discrete
conservation of mass while advecting the level set function. Sec-
ondly, the method should not introduce any spurious oscillations.
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inally, the initial properties of the level set function should be
aintained throughout the simulation.
The equation for reinitializing the level set function can be

ritten as per [2] as,
∂ψ

∂τr
+ C (∇ · (ψ(1 − ψ)n0)− ∇ · (ε (∇ψ · n0) n0)) = 0 (5)

here, n0 =
∇ψ0
|∇ψ0|

is the interface contour normal vector defined
efore the reinitialization starts. The variable τr [s] is a time like
ariable and ψ0 [no units] is the level set function defined at τr =

. The parameter ε [m] is the width of the transition region and
[m/s] is a kinematic parameter introduced in order to take care
f the dimensional correctness. The parameter C is usually taken
s unity. In Eq. (5), the second term consists of a compression
erm and a diffusion term, which balances each other once Eq. (5)
onverges in time τr .
In practice, the reinitialization formulation suffers from var-

ous deficiencies. As described in the introduction, the above
einitialization procedure may involve error in the computation
f n0. It may also be noted, the reinitialization equation moves
he interface contour based on the local curvature. In order to
dentify terms that have potential to move the interface contour
uring the reinitialization, Eq. (5) is rewritten in non-conservative
orm by expanding the compressive and diffusive terms. The basic
dea here is to identify and isolate velocity like terms in Eq. (5).
o start with, the identity shown in [10] can be obtained by
ifferentiating Eq. (1) in space, as,

ψ =
ψ(1 − ψ)

ε
∇φ (6)

Taking dot product on both sides of Eq. (6) with ∇φ and re-
arranging terms, the following identity can be obtained, as,

ψ(1 − ψ) =

(
ε∇φ

|∇φ|2

)
· ∇ψ (7)

Now, using the definition κ0 = −∇ ·n0 and Eq. (7), the compres-
sion term in Eq. (5) can be expanded as,

∇ · (ψ(1 − ψ)n0) = −

(
εκ0∇φ

|∇φ|2

)
· ∇ψ + (1 − 2ψ)∇ψ · n0 (8)

Similarly, realizing that (∇ψ · ∇n0) · n0 = 0, for any n0 such
hat |n0| is constant throughout the domain, the diffusion term
in Eq. (5) can also be expanded as,

∇ · (ε(∇ψ · n0)n0) = (−εκ0n0) · ∇ψ + ε(n0 · ∇(∇ψ)) · n0 (9)

ith the above expansions for the compression and diffusion
erms, the reinitialization equation (5) can be rewritten as,
∂ψ

∂τr
+ v · ∇ψ = −C(1 − 2ψ)∇ψ · n0 + Cε (n0 · ∇(∇ψ)) · n0 (10)

here, v = εκ0C
(
n0 −

∇φ

|∇φ|2

)
is a curvature dependent velocity

erm. Looking at the above form, it is clear that the left hand
ide (LHS) part of Eq. (10) has the potential to move the interface
uring the reinitialization iterations according to the velocity
ector v. In one dimensional case, κ0 being zero, there will be no
dvection of ψ . However, in higher dimensions, κ0 need not be
lways zero. A non-zero value of κ0 will thus result in advection

of ψ according to the sign and strength of κ0 in the direction of v.
his will lead to the unwanted movement of interface contour in
urved interface regions. In most of the cases, the interface con-
our movement due to the curvature dependent velocity will be
ery small. However, when numerical simulations are carried out
ith a frequent or/and large number of reinitialization iterations,
his error starts getting accumulated and the interface movement
ecomes significant. In order to demonstrate this a set of in-place
 (
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reinitialization test problems is described in Section 4.1, where,
the movement of interface contour is carefully inspected during
reinitialization of level set functions with no externally specified
velocity field.

The terms in the right hand side (RHS) of Eq. (10) are respon-
sible for the sharpening and dissipating the level set function
profile along the contour normal direction. In order to demon-
strate this, Eq. (10) is re-written with an appropriate coordinate
transformation from the x − y coordinates frame to the contour
normal and tangent coordinates frame, (n0 − t0), as,

∂ψ

∂τr
+ vn · ∇nψ = −C(1 − 2ψ)

∂ψ

∂n0
+ Cε

∂2ψ

∂n2
0

(11)

here, vn = εκ0C
(
n̂0 −

∇nφ

|∇nφ|2

)
is the curvature dependent

velocity term, n̂0 = (1, 0) is the unit vector directed along the
contour normal direction and ∇n =

(
∂
∂n0

)
ên0 +

(
∂
∂t0

)
êt0 is the

gradient operator in the n0 − t0 coordinates frame. The level
set function, ψ , increases along the contour normal direction.
Therefore, the ∂ψ

∂n0
is always positive. The kinematic constant,

C , is taken as unity. Therefore, in the absence of the curvature
dependent advection velocity and the second term of RHS in
Eq. (11), it is clear that within the interface region, the sign of
∂ψ

∂τr
depends upon the sign of the factor −(1 − 2ψ). That is, ∂ψ

∂τr
is positive when ψ > 0.5 and negative when ψ < 0.5. Far

away from the interface ∂ψ

∂n0
is zero, leading to

∂ψ

∂τr
= 0. This

term, therefore, is responsible for sharpening the level set profile
along the normal direction during reinitialization. The second
term in the RHS of Eq. (11) is a second derivative term, and
is responsible for the dissipation of the ψ-profile in the contour
normal direction, thus, balancing the interface sharpening term.

2.2. Reformulation of the reinitialization equation

As described in the previous section, the first and second
terms in the RHS of Eq. (10) are needed for sharpening the level
set profile and balancing it. However, the curvature dependent
advection term, v · ∇ψ , unnecessarily moves the interface; thus
it is undesired in a reinitialization procedure. Therefore, in the
new formulation of the reinitialization equation, we remove the
curvature dependent advection term from Eq. (10). It may be
noted, the computation of the level set sharpening and balancing
terms as given in the RHS of Eq. (10) are unsuitable in their
present form due to the increased sensitive towards numerical
errors arising from the ill-conditioned behaviour of the contour
normal vectors. In order to overcome the difficulty to deal with
these terms, in the new formulation, we seek for terms that are
easy to compute and are less sensitive to numerical errors arising
form the ill-conditioned contour normal vectors. By taking dot
product on both sides of Eq. (6) with n0, we can get the following
identity, as,

∇ψ · n0 =
ψ(1 − ψ)

ε
∇φ · n0 (12)

ow, considering n0 ∼
∇φ

|∇φ|
and |∇φ| ≃ 1 within the thin inter-

ace region, the following simplified relationship can be obtained,

ψ · n0 ∼
1
ε
ψ(1 − ψ) (13)

imilarly, in order to obtain a simplified expression for the second
erm in the RHS of Eq. (10), one can write,

n · ∇(∇ψ) · n = ∇(∇ψ · n ) · n − (n · ∇n ) · ∇ψ (14)
0 ) 0 0 0 0 0
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ue to the fact that |n0| = 1, the second term in the RHS
f Eq. (14) is zero. Now, replacing the (∇ψ ·n0) from the first term

using the relation given in (13) and by considering n0 ∼
∇ψ

|∇ψ |
, the

ollowing simplified relationship can be obtained,

n0 · ∇(∇ψ)) · n0 ∼
1
ε
(1 − 2ψ)|∇ψ | (15)

t may be evident that the relationships (13) and (15) give alter-
ative approximate terms that are much simpler than the original
nes. Particularly, they do not have contour normal vectors. It
s demonstrated later in this paper that with the alternative ex-
ressions, the new reinitialization equation reinitializes the level
et function much more efficiently. After removing the curvature
ependent velocity term and by using the simplified expressions
iven by (13) and (15), Eq. (10) can be reformulated as,

∂ψ

∂τr
=

C
ε

(
−ψ(1 − ψ)(1 − 2ψ) + ε(1 − 2ψ)|∇ψ |

)
(16)

Now, defining a new pseudo time variable, as, τn =
C
θε
τr . Here, the

arameter θ [1/s] is a constant and introduced here only to take
are of the dimensional correctness. The parameter θ can there-
fore be taken as unity. By using the rule for the change of vari-
able from τr to τn in the above equation, the final reformulated
reinitialization equation can be written as,
∂ψ

∂τn
= θ [−ψ(1 − ψ)(1 − 2ψ) + ε(1 − 2ψ)|∇ψ |] (17)

n order to prove that the hyperbolic tangent function, as given
n Eq. (1), trivially satisfies the steady state form of the new
einitialization equation (17), let us consider that the steady state
olution of Eq. (17) takes the following form similar to Eq. (1), as,

=
1

1 + e−Φ/ε
(18)

Notice that, here, the scalar field Φ need not necessarily be
defined as a signed distance function. Rather, it can be any real-
valued function. However, we prove that Eq. (18) satisfies the
steady state form of Eq. (17) if and only if the scalar field Φ is
a signed distance function. In order to show this, we first take
the gradient of Eq. (18), as,

∇ψ =
eΦ/ε

ε(1 + eΦ/ε)2
∇Φ (19)

ince the exponential function is always positive, one may also
ay that,

|∇ψ | =
eΦ/ε

(1 + eΦ/ε)2
|∇Φ| (20)

Similarly, we may obtain the term ψ(1−ψ) directly from Eq. (18)
as,

ψ(1 − ψ) =
eΦ/ε

(1 + eΦ/ε)2
(21)

ow, one can see that at the steady state, Eq. (17) simplifies to
he following relation:

ψ(1 − ψ) + ε|∇ψ | = 0 (22)

pon substituting Eqs. ((20) and (21)) in the steady state form
f the reinitialization equation, we arrive at the condition that
q. (22) will be satisfied if and only if |∇Φ| = 1. In other words,
he scalar-valued function Φ , used in Eq. (18), must be a signed
istance function.
The overall behaviour of Eq. (17) may also be described by

onsidering each term in the RHS individually. In the absence
f the second term in RHS, Eq. (17) behaves like an ordinary
43
ifferential equation with ψ = 1 and ψ = 0 as two stable
quilibrium points and ψ = 0.5 as an unstable equilibrium point.
ig. 1 shows the phase plot of Eq. (17) with the only first term
n the RHS. From the phase plot, it is clear that the first term
esults in sharpening the level set function profile. Nature of the
econd term in the RHS of Eq. (17) is to balance the first term.
ince the ε and |∇ψ | are always positive quantities, the sign of
he second term depends on the sign of (1−2ψ). That is, the sign
f the second term is positive when ψ < 0.5 and negative when
ψ > 0.5. At ψ = 0.5, the second term is zero. In other words, the
second term drives the level set function towards a flat profile
with ψ = 0.5 everywhere, thus balancing the first term. With
the above-mentioned sharpening and balancing actions, Eq. (17)
reinitializes the level set function by keeping the ψ = 0.5 contour
invariant during the reinitialization iterations.

One may also notice that both the terms in the RHS of Eq. (17)
becomes negative when ψ > 1. Similarly, both the terms become
positive when ψ < 0. This behaviour helps in stabilizing the
overshoot (ψ > 1) and undershoot (ψ < 0) issues arising in case
of the use of non-TVD numerical schemes for solving the level set
advection equation.

Unlike the artificial compression based reinitialization equa-
tion, Eq. (17) is not written in a conservation law form. Therefore,
it is not straightforward to strictly prove the integral conservation
of the ψ-field over the entire computational domain. However,
owing to the interface-preserving property, the area occupied by
the interface contour will be unchanged during the reinitializa-
tion. Later, in Section 4, it is demonstrated that the new approach
is able to achieve a satisfactory level of overall mass conservation
in incompressible two-phase flow problems.

3. Mathematical formulation of incompressible two-phase
flows

3.1. Governing equations

A dual time-stepping based artificial compressibility approach
is followed here for modelling incompressible two-phase flows.
The governing system of equations describing the unsteady in-
compressible viscous two-phase flow can be written as,

∂U
∂τ

+ I t
∂U
∂t

+

[
∂(F − Fv)
∂x

+
∂(G − Gv)

∂y

]
= Fg + Fs (23)

here,

=

⎧⎪⎨⎪⎩
p/β
ρu
ρv

ψ

⎫⎪⎬⎪⎭ ; F =

⎧⎪⎨⎪⎩
u

ρu2
+ p

ρuv
uψ

⎫⎪⎬⎪⎭ ; G =

⎧⎪⎨⎪⎩
v

ρuv
ρv2 + p
vψ

⎫⎪⎬⎪⎭ ;

v =

⎧⎪⎪⎨⎪⎪⎩
0

2µ ∂u
∂x

µ( ∂u
∂y +

∂v
∂x )

0

⎫⎪⎪⎬⎪⎪⎭ ; Gv =

⎧⎪⎪⎨⎪⎪⎩
0

µ( ∂u
∂y +

∂v
∂x )

2µ ∂v
∂y

0

⎫⎪⎪⎬⎪⎪⎭ ;

Fg =

⎧⎪⎨⎪⎩
0

−ρgx
−ρgy
0

⎫⎪⎬⎪⎭ ; Fs =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

−σκ
∂ψ

∂x

−σκ
∂ψ

∂y
0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ; I t =

⎡⎢⎣ 0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ .
where, the vector U in Eq. (23) denotes the vector of conservative
variables and the vectors (F,G) and (Fv,Gv) denote the convec-
tive and viscous flux vectors respectively. The vectors Fg and
Fs denote the source terms containing gravitational and surface
tension forces respectively. Here, the surface tension term is mod-
elled using a continuum surface forces (CSF) method, proposed
by Brackbill et al. [12]. The parameter σ denotes the surface
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tension coefficient per unit length of interface and gx and gy
enote the x and y components of acceleration due to gravity.
ariables p, ρ and µ denote the pressure, density and dynamic
iscosity of the fluid respectively. The variables τ and t appearing
n Eq. (23) denote the pseudo time and the real time respectively.
he parameter β denotes the artificial compressibility parameter,
hich is usually taken as a constant for a given test problem.
he artificial compressibility term added in the continuity equa-
ion is similar to the one introduced by Chorin in [13]. Once
quation (23) converges to a pseudo-steady state, it recovers the
et of unsteady incompressible two-phase flow equations. It can
e noticed that the level set advection, described by Eq. (4), is
ombined here with the system of Eqs. (23), and solved simulta-
eously along with the Navier–Stokes equations. The density and
iscosity used in Eq. (23) are defined in terms of the level set
unction, as,

= ρ(ψ) = ρ2ψ + (1 − ψ)ρ1 (24)
= µ(ψ) = µ2ψ + (1 − ψ)µ1 (25)

here the subscripts ‘‘1’’ and ‘‘2’’ indicate the properties corre-
pond to the first and the second fluids respectively.

.2. Numerical discretization of governing equations

A finite volume approach is followed here for solving the
overning system of Eqs. (23). In order to proceed with finite
olume discretization, the governing system of Eqs. (23) is first
ntegrated over a control volume. The computational domain is
hen discretized into a finite number of non-overlapping finite
olume cells. The final space discretized form of Eqs. (23) for an
th finite volume cell can be written as,

i
∂U
∂τ

+ I tΩi
∂U
∂t

+ R
(
U
)

= 0 (26)

here,(
U
)

=

M∑
m=1

(
F nm

x + G nm
y

)
m
Γm −

M∑
m=1

(
Fv nm

x + Gv nm
y

)
m
Γm

− Ω F −Ω F ,
i g i s

44
Ωi is the area, Γm and nm
= (nm

x , n
m
y ) are the length and edge

ormals of the mth edge respectively and M is the total number of
dges of the finite volume cell i. The vectors U, Fg and Fs represent

the cell averaged values of U, Fg and Fs respectively. The source
erm vector, Fg , appearing in Eq. (26) is computed by multiplying
the cell averaged value of density and the acceleration due to
gravity. Evaluation of the surface tension vector, Fs, involves
the computation of gradient, contour normal and curvature of
the level set function. The contour normal and curvature are
computed from the gradient of the level set function as per
equation (2) and Eq. (3) respectively, where the gradient vector
is evaluated using a central least square method as explained
in [14]. The convective flux vector

(
F nm

x + G nm
y

)
and the viscous

lux vector
(
Fv nm

x + Gv nm
y

)
in Eq. (26) are computed at the edges

f each cell using a Roe-type Riemann solver, developed in [15],
nd a Green–Gauss integral approach over a Coirier’s diamond
ath, described in [14], respectively. The real time derivatives
ppearing in Eq. (26) are computed using a three point implicit
ackward differencing procedure. Finally, an explicit three stage
trong Stability Preserving Runge–Kutta (SSP-RK) method, de-
cribed in [16], is used for iterating in pseudo-time. The time
tep required for the pseudo-time iteration is computed by con-
idering the convective, viscous, gravitational and surface tension
ffects. For faster convergence, a local time stepping approach is
dopted here, in which, each cell is updated using its own ∆τi.
he local time step ∆τi is computed as,

τi = min(∆τ convi ,∆τ visci ,∆τ
grav
i ,∆τ surfi ) (27)

here, ∆τ convi ,∆τ visci ,∆τ
grav
i and ∆τ surfi are the maximum al-

owed time steps due to convective flux, viscous flux and gravi-
ational and surface tension forces respectively. These time steps
re evaluated as,

τ convi =
ν Ωi∑M

m=1

(
|un| +

√
(un)

2
+

β

ρi

)
m
Γm

;

∆τ visci =
ν Ω2

i( 8
3

)
µi
ρi

∑M
m=1 (Γm)

2
;
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and ∆τ surfi = ν

√
(ρ1 + ρ2)h3

4πσ
here, ν is the Courant number, h is the average cell size and un

s the velocity component along the edge normal direction. For
tability reasons, the Courant number, ν, is always taken less than
nity. The ∆τi computed using Eq. (27) is further restricted based
n the real time step [17], as, ∆τi ≤

2
3∆t . Detailed descriptions

f the numerical methods used for solving incompressible two-
hase flows are excluded from here due to brevity reasons. One
an refer to [14,15] for more details.

.3. Numerical discretization of reinitialization equation

The RHS of Eq. (17) consists of two terms. In order to evaluate
he first term at a given cell, only the cell centre values of ψ
s sufficient. However, evaluation of the second term involves
omputation of the gradient of ψ . Here, the gradient of ψ at the
ell centres are evaluated using a central least square approach as
iscussed in Appendix A. Finally, the time integration of Eq. (17)
s carried out using a three stage Strong Stability Preserving
unge–Kutta (SSP-RK-3) method described in Section 3.3.1.

.3.1. Time integration for the reinitialization equation
According to the SSP-RK-3 approach described in [16], the cell

veraged value of the unknown function in Eq. (17) is updated as,

ψi
(1)

= ψi
(n)

+
∆τn

Ωi
L
(
ψi

(n)
)

ψi
(2)

=
3
4
ψi

(n)
+

1
4
ψi

(1)
+

1
4
∆τn

Ωi
L
(
ψi

(1)
)

ψi
(n+1)

=
1
3
ψi

(n)
+

2
3
ψi

(2)
+

2
3
∆τn

Ωi
L
(
ψi

(2)
) (28)

where, ψi
(n)

and ψi
(n+1)

are the cell averaged level set function
efined at nth and (n + 1)th time levels, respectively, ψi

(1)
and

ψi
(2)

are the intermediate values of ψ and(
ψi

(·)
)

= θ

[
−ψi

(·)
(1 − ψi

(·)
)(1 − 2ψi

(·)
) + ε|∇ψi

(·)
|(1 − 2ψi

(·)
)
]

(29)

For the explicit time integration of Eq. (17), the time step is
estricted based on the nature of the reinitialization equation. In
rder to find out the allowable time step, Eq. (17) is rewritten
sing the following identities,

(1 − ψ) = ε

(
1

|∇φ|

)
n · ∇ψ (30)

nd

∇ψ | = n · ∇ψ (31)

s,
∂ψ

∂τn
+ S · ∇ψ = 0 (32)

here, S = εθ (1 − 2ψ)
(

1−|∇φ|

|∇φ|

)
n. Eq. (32) is in Hamilton–

acobi form with a velocity like variable, S [m/s], aligned in the
direction of the vector field n. Note that, unlike the curvature
dependent velocity vector, v, found in Eq. (10), the vector S has
no dependency on the curvature of the fluid–fluid interface. The
vector S has opposite signs on both sides of the interface and
is equal to zero at ψ = 0.5. According to the sign of the term
45
(
1−|∇φ|

|∇φ|

)
, the vector field S will be directed either towards or

way from the interface, resulting only in sharpening or flattening
f the ψ profile and not in any apparent motion of the interface
ontour. Since the solution variable ψ is updated according to the
harpening velocity vector S, a stable explicit time integration
cheme for Eq. (32) is possible only with a restricted time step
ased on the CFL condition as,

τn ≤
h

|S|
(33)

here, h is the average cell size and |S|=ε θ |(1−2ψ)|
⏐⏐⏐( 1−|∇φ|

|∇φ|

)⏐⏐⏐
Under normal conditions, the value of ψ is bounded between 0
and 1, which implies, |1 − 2ψ |max = 1. Similarly, considering
|∇φ| ≃ 1, the term

⏐⏐⏐( 1−|∇φ|

|∇φ|

)⏐⏐⏐ becomes negligibly small. With
he above approximations and by taking θ = 1, one may obtain
n upper bound for the magnitude of S, as, |S|max = ε. If one
hoose the thickness parameter, ε, similar to [1], as, ε =

h(1−d)

2 ,
he CFL condition given in Eq. (33) yield the allowable time step
s,

τn ≤ 2hd (34)

t may be noticed that the time step, ∆τn, given in Eq. (34) is
arger by a factor of 4/h in comparison with the allowable time
tep for the artificial compression based reinitialization proce-
ure [1]. The presence of a viscous dissipation term in the artifi-
ial compression based approach restricts the reinitialization time
tep to a smaller value [1]. In addition to the larger time step, the
elatively less complex terms in the new reinitialization equation
ignificantly reduces the numerical computations per reinitial-
zation time step, aiding an overall reduction in computational
fforts.

.3.2. Implementation details of the new reinitialization equation
A summary of the major steps in the numerical implementa-

ion of the new reinitialization equation is described here. As soon
s the advection step of the level set function is completed, the
ollowing reinitialization steps are performed:

• Step 1: Compute the maximum possible ∆τn using Eq. (34).
• Step 2: Compute the derivatives of ψ along x and y direc-

tions. Use central differencing in case of structured mesh
or use the central least square method described in the Ap-
pendix A in case of unstructured meshes.

• Step 3: Compute the magnitude of the gradients of ψ using

the equation |∇ψ | =

√(
∂ψ

∂x

)2
+

(
∂ψ

∂y

)2
for two dimensional

problems.
• Step 4: Compute the right hand side of the new reinitializa-

tion equation using Eq. (29).
• Step 5: Update to a new τn level using the SSP-RK-3 steps

described in Eq. (28).
• Step 6: Repeat Step 1 to Step 5 until the iteration converges

in τn.

4. Numerical experiments

Performance of the new reinitialization procedure is evaluated
using three types of test problems. In order to illustrate the
movement of the interface contour during the reinitialization and
to study convergence behaviours, a set of test problems involving
reinitialization of stationary level set function, is carried out first
in Section 4.1. These problems are named here as in-place reini-
tialization problems. After the in-place reinitialization problems,
a set of scalar advection based test problems are considered in
Section 4.2, where, the area and shape errors during the level set
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Fig. 2. In-place reinitialization of a circular interface using the original CLS approach (a) to (d) and the new approach (e) to (h). The dashed black curve denotes the
initial interface and the solid black curves denote the interfaces at the respective pseudo-time iterations.
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advection are quantified. In Sections 4.4–4.6, several incompress-
ible two-phase flow test problems are presented. These problems
are arranged according to their increasing levels of complexities,
starting from an inviscid flow problem to problems involving
viscous and surface tension forces. All test problems are solved on
simple Cartesian type meshes. However, in order to demonstrate
the ability to deal with complex mesh types, the last test problem
is also solved on an unstructured mesh consisting of finite volume
cells having triangular and quadrilateral shapes.

4.1. In-place reinitialization problems

As illustrated in Section 2.1, the artificial compression based
einitialization approach often results in moving the interface
ontour according to the sign and strength of the interface cur-
ature. This also results in poor convergence during the reini-
ialization iterations. In order to demonstrate this, a set of test
roblems involving reinitialization of stationary level set func-
ion is carried out here. Tests are performed using the new
einitialization approach (denoted as ‘‘new’’) and the artificial
ompression based reinitialization procedure of [2] (denoted as
‘CLS’’). Firstly, the problem of movement of interface contours
s demonstrated, using three shapes having different curvature
rofiles, in Section 4.1.1. Secondly, the convergence behaviour of
he reinitialization procedure is studied in Section 4.1.2. Finally,
n Section 4.1.3, the CPU time for one reinitialization iteration is
easured and compared.

.1.1. Demonstrating movement of interface contours
In order to demonstrate this, level set functions corresponds

o three basic geometric shapes of different curvature profiles are
onstructed first. For the present study, a circle with a diameter
f 4 units, an ellipse with 4 units and 2 units of major and minor
xes respectively and a square with size 3 units, are chosen. These
eometric shapes are placed at the centre of a computational
omain of a square shaped region bounded between −5 ≤ x ≤ 5
nd −5 ≤ y ≤ 5. The computational domain is discretized
sing a 200 × 200 Cartesian mesh. These level set functions are
hen taken as the initial condition for both the reinitialization
46
quations. In order to see how stable are the interface contours
nder the repeated action of reinitialization iterations, a large
umber of reinitialization iterations using both the reinitializa-
ion approaches are carried out for all the three shapes. Unlike
ther test problems, numerical errors associated with the advec-
ion of level set function are not present here. Therefore, this test
elps in isolating errors associated only with the reinitialization
rocess. In principle, the reinitialization process should not result
n the movement of the interface contour. However, due to the
urvature dependent velocity field implicitly present in the arti-
icial compression based reinitialization approach, as explained in
ection 2.1, one may expect to see a spurious movement of the
nterface contours in case of the existing artificial compression
ased approach.
During the reinitialization iterations, the deformation of the

nterface contour in both the CLS and the new approaches are
onitored constantly. Figs. 2, 3 and 4 show the interface contours
uring the in-place reinitialization compared with the initial con-
ours in cases of circle, ellipse and square shapes respectively. The
olid black curve denotes the interface contour during reinitial-
zation and the dashed black curve denotes the initial interface
ontour. One can notice that, for all the three shapes, up to
0 number of reinitialization iterations no significant changes
n the interface contours are visible. However, as the number
f reinitialization iterations increases, the interface contours, in
ase of the CLS approach, show deformations. Especially, more
eformations can be observed at regions having higher curvature.
hereas, there are no visible deformations of the interface con-

ours even after 250 iterations in case of the new reinitialization
pproach. In order to quantify the degree of movement of the
nterface contours, an L2 error is defined, as,

2
=

(
1

Nx × Ny

)√ Nx∑
i=1

Ny∑
j=1

(
ψ l

ij − ψ0
ij

)2
(35)

where, the superscripts, 0 and l, denote the discretized ψ-field at
initial and at lth reinitialization iteration levels respectively, and
N and N denote the number of cells along x and y directions
x y
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the initial interface and the solid black curves denote the interfaces at the respective pseudo-time iterations.
Fig. 4. In-place reinitialization of a square shaped interface using original CLS approach (a) to (d) and the new approach (e) to (h). The dashed black curve denotes
he initial interface and the solid black curves denote the interfaces at the respective pseudo-time iterations.
f
d

espectively. Fig. 5 shows the variation of the L2 error with respect
o the number of reinitialization iteration. From Fig. 5, one can
ee that the L2 error in case of the new reinitialization scheme
s below 10−4 level. Whereas, in case of CLS, the L2 error keeps
ncreasing as the number of reinitialization iteration increases.
hese observations are in well agreement with the discussion
iven in Sections 2.1 and 2.2.

.1.2. Convergence study of the reinitialization equation
In the previous tests, the issue of the spurious movement

f the interface contour for the CLS approach is demonstrated.
47
In this section the convergence behaviours of the two reinitial-
ization approaches are compared. For this, the following test
problem is considered. An initial ψ-field, corresponds to a circular
interface of a diameter of 4 units, is constructed on a domain
bounded between −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5. The ψ-
ield is constructed in such a way that the initial ψ-profile is
iffused over several cells by setting a large ε = 2.0 ∆x in Eq. (1).

Now, this diffused ψ-field is used as the initial condition for both
the CLS and the new reinitialization equations, where, a smaller
ε = 0.5 ∆x is set for the reinitialization equations. During the
reinitialization iterations the initially diffused ψ-field is expected
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Fig. 6. The slice view of a portion of the ψ function along x-axis at different levels of reinitialization iterations of both the CLS and the new reinitialization schemes.
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o converge to a sharp ψ-profile corresponding to Eq. (1) with
= 0.5 ∆x. The reinitialization equations are solved on a Carte-
ian mesh of 200 × 200 cells. In Fig. 6, a slice view of a portion
f the ψ function along the x-axis is plotted. From Fig. 6(b) one
an see that, with the new reinitialization approach, the initially
iffused ψ-profile converges to the exact solution (ie., ψ-profile
orresponds to Eq. (1) with ε = 0.5 ∆x) in around 15 iterations.
he level set profile in case of the CLS also gets sharper during the
einitialization iteration. However, the interface contour slowly
rifts away from its original position (refer Fig. 6(a)).
In order to quantify the convergence characteristics of the

einitialization equations, the following residual is defined, as,

esidual =

(
1

Nx × Ny

)√(ψ l+1
ij − ψ l

ij

∆τp

)2

, (36)

here, τp denotes the reinitialization time step (τp = τr in case of
LS reinitialization and τp = τn in case of the new reinitialization
quation). An L2 error is also defined, similar to Eq. (35), where,
he ψ0

ij is replaced with a ψij-field which satisfies Eq. (1) with
= 0.5 ∆x. The residual of the ψ-field ( Eq. (36)) indicates

he changes in the ψ-field during the reinitialization iterations.
hereas, the L2 error quantifies the convergence of the ψ-profile

o the exact ψ-profile. Fig. 7 shows the variation of the residual
nd the L2 error with respect to the number of reinitialization
teration. From Fig. 7, one can see that both the residual and
he L2 error of the new reinitialization scheme converges to the
achine zero level. Whereas, the residual, in case of the CLS, does
ot converge below 10−5 level. The L2 error, in case of the CLS

continue to increase followed by an initial short dip. The poor
48
convergence behaviour of the CLS could be due to the spurious
movement of the interface contour.

4.1.3. Comparison of CPU time per reinitialization iteration
In order to compare the actual CPU time required for one

reinitialization iteration, the same test problem is solved on six
different meshes ranging from 12 × 12 up to 400×400. Codes are
ritten in standard C++03 and compiled using gcc 7.5.0 with
O0 optimization flag. Tests are carried out under serial com-
uting mode on a linux based operating system with an eighth
eneration Intel Core i5 processor. The CPU time required
or 500 iteration is measured and the average CPU time for one
einitialization iteration is calculated. Fig. 8 shows the CPU time
or one reinitialization iteration for the CLS approach and the
ew approach. One can see from Fig. 8 that the CPU time for the
ew reinitialization approach is much less compared to the CLS
pproach. On average, the new approach is 17.191 times faster
han the CLS.

.2. Reinitialization of scalar advection problems

In order to further study the performance of the new reini-
ialization formulation, a set of standard two-dimensional scalar
dvection based test problems are considered next. In the scalar
dvection problems, the initial interface is placed at (0.25, 0.5)
n a unit square domain and advected upon a predefined velocity
ield. After each scalar advection time step the level set function
s reinitialized using a set of four reinitialization iterations. The
rea confined by the interface and the L1 and L2 error norms are
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Fig. 8. Average CPU time for one reinitialization iteration for the CLS and the
ew reinitialization approaches.

onitored during the simulation. The percentage area error, at
ny given time t , is computed as,

rea Error (%) =

(
At

− A0

A0

)
× 100 (37)

where, A is the area enclosed by the 0.5 contour of the level set
function and the superscript t and 0 represent the data computed
at time t and at the initial time, t = 0, respectively. Similarly, the
L1 and L2 error norms at time level t = 2π , are defined as,

L1 =

(
1

Nx × Ny

) Nx∑
i=1

Ny∑
j=1

|ψ2π
ij − ψ0

ij | (38)

nd

2
=

(
1

Nx × Ny

)√ Nx∑
i=1

Ny∑
j=1

(
ψ2π

ij − ψ0
ij

)2
(39)

here, ψ2π
ij and ψ0

ij are the discretized level set functions defined
t time level, t = 2π and t = 0 respectively.

.2.1. Reinitialization of circular disc rotation problem
Rotation of a circular disc, similar to the test reported in [1],

s considered first, where, a circular disc of radius 0.15 units is
dvected upon a velocity field u = (y − 0.5) and v = (0.5 − x).

The test problem is solved on five levels of Cartesian meshes
starting from 25 × 25 up to 400 × 400. The level set contours
49
correspond to ψ = 0.05, ψ = 0.5 and ψ = 0.95 for the
100 × 100 case at time levels t = 0, t = π/4, t = π/2 and
t = 3π/4 for the CLS and the new reinitialization approaches
are plotted in Fig. 9. The Table 1 shows the percentage area error
and error norms for all five mesh levels for the CLS and the new
reinitialization approaches. Further, the error norms are plotted
against the mesh size in Fig. 10 along with reference slopes for
the first and second order rate of convergence. In Fig. 11, the
area errors for each mesh levels are plotted with respect to time.
Looking at the above figures and table, one can see that the new
reinitialization approach shows better performance as compared
to the CLS approach.

4.2.2. Reinitialization of Zalesak’s disc rotation problem
The second problem considered is the advection of Zalesak’s

disc, similar to the test reported in [5]. The Zalesak’s disc is of
radius 0.15 units, and notch length and width of 0.3 units and 0.1
units respectively. Due to the presence of sharp corners, this test
problem shows more numerical errors compared to the previous
problem. Similar to the rotation of the circular disc problem,
this problem also is solved on five levels of Cartesian meshes
starting from 25 × 25 up to 400 × 400. The level set contours
correspond to ψ = 0.05, ψ = 0.5 and ψ = 0.95 for the
100 × 100 case at time levels t = 0, t = π/4, t = π/2 and
t = 3π/4 for the CLS and the new reinitialization approaches are
plotted in Fig. 12. In order to compare the performance of the
CLS and the new reinitialization approaches quantitatively, the
percentage area error and error norms are computed after the
disc completed one full rotation (ie., at t = 2π ). The Table 2
shows the percentage area error and error norms for all five
mesh levels. Further, the error norms are plotted against the
mesh size in Fig. 13 along with reference slopes for the first
and second order rate of convergence. In Fig. 14, the area errors
for each mesh levels are plotted with respect to time. Similar
to the previous problem, here also it can be seen that the new
reinitialization approach shows better performance as compared
to the CLS approach.

4.2.3. Reinitialization of circular disc deformation problem
The last scalar advection test problem considered is the ad-

vection of a circular disc subjected to a shear velocity field,
u = sin2(πx) sin(2πy), v = − sin2(πy) sin(2πx). Fig. 15 shows
a qualitative comparison of the interface contour for the CLS and
the new reinitialization approaches at t = 4 s solved a 200 × 200
artesian mesh. From Fig. 15, one can clearly see that the tail
f the interface is fully resolved without breaking in case of the
ew reinitialization scheme. By strictly ensuring that the interface
ontours do not move during the level set reinitialization, the new
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Fig. 9. Comparison of reinitialization schemes for the reinitialization of circular disc rotation problem solved on 100 × 100 grid. Each subfigure shows the 0.05, 0.5
nd 0.95 level contours of the level set functions at time levels of 0, π /4, π /2 and 3π /4 (left, top, right and bottom respectively).
Fig. 10. Convergence of the L1 and L2 error norms for the reinitialization of circular disc rotation problem solved on four (25 × 25, 50 × 50, 100 × 100 and
00 × 200) grid levels.
Fig. 11. Percentage area errors for the reinitialization of circular disc rotation problem solved on five (25 × 25, 50 × 50, 100 × 100, 200 × 200 and 400 × 400)
rid levels using the CLS and the new reinitialization schemes.
Table 1
Percentage area errors, L1 and L2 errors computed after completion of one full rotation of different reinitialization schemes for the reinitialization
of circular disc rotation problem.
Mesh Area Error (%) L1 Error L2 Error

CLS New CLS New CLS New

25×25 −5.48500 −1.95050 2.6488E−02 1.4665E−02 3.5611E−03 2.4929E−03
50×50 −2.21890 −0.15707 5.2915E−03 5.5977E−03 4.4320E−04 4.4555E−04
100×100 −1.99710 −0.02158 3.3020E−03 2.4589E−03 1.6393E−04 1.6827E−04
200×200 −1.71600 −0.00865 2.1747E−03 1.2175E−03 7.3160E−05 6.9736E−05
400×400 −1.3129 −0.00083 1.8574E−03 9.7021E−04 3.4264E−05 2.5883E−05
50
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Fig. 12. Comparison of reinitialization schemes for the reinitialization of Zalesak’s disc rotation problem solved on 100 × 100 grid. Each subfigure shows the 0.05,
.5 and 0.95 level contours of the level set functions at time levels of 0.0, π /4, π /2 and 3π /4 (left, top, right and bottom respectively).
Fig. 13. Convergence of the L1 and L2 error norms for the reinitialization of Zalesak’s disc rotation problem solved on four (25 × 25, 50 × 50, 100 × 100 and
00 × 200) grid levels.
Fig. 14. Percentage area errors for the reinitialization of Zalesak’s disc rotation problem solved on five (25 × 25, 50 × 50, 100 × 100, 200 × 200 and 400 × 400)
rid levels using the CLS and the new reinitialization schemes.
Table 2
Percentage area errors, L1 and L2 errors computed after completion of one full rotation of different reinitialization schemes for the reinitialization
of Zalesak’s disc rotation problem.
Mesh Area Error (%) L1 Error L2 Error

CLS New CLS New CLS New

25×25 −9.49000 −7.10470 4.2972E−02 1.9959E−02 5.5200E−03 2.4447E−03
50×50 −5.33530 −3.70040 1.3590E−02 1.2202E−02 1.0000E−03 1.0036E−03
100×100 −3.09830 −1.28230 7.4338E−03 6.4325E−03 3.7050E−04 3.8000E−04
200×200 −2.38510 −0.90177 4.2656E−03 3.8105E−03 1.0556E−04 1.2000E−04
400×400 −1.81240 −0.439886 3.5455E−03 2.5418E−03 5.1928E−05 5.2658E−05
51
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Fig. 15. Comparison of reinitialization schemes for the reinitialization of circular disc deformation problem solved on 200 × 200 grid. Each subfigure shows the 0.5
evel contours of the level set function at time levels of 4 s.
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Fig. 16. Percentage area errors for the reinitialization of circular disc defor-
mation problem solved on 200 × 200 grid levels using the CLS and the new
reinitialization schemes.

reinitialization is able to capture the thin elongated tail. Fig. 16
shows the area errors plotted with respect to time for both the
reinitialization approaches. Here also, one can see that the area
error, in case of the new reinitialization scheme is very small
compared to the CLS.

4.3. Low amplitude sloshing

In order to quantify the performance of the new reinitializa-
tion algorithm, more realistic problems are considered next. The
liquid sloshing inside a stationary water tank problem, reported
in [15,18], is considered first in this category. The water tank is a
square shaped one bounded between 0 ≤ x ≤ L and 0 ≤ y ≤ L,
here, L = 0.1 m. The bottom half of the tank is filled with
ater of density 1000 kg/m3 and the remaining space is filled
ith air of density 1 kg/m3. The air–water interface is defined

nitially as y(x) = 0.05+0.005 cos(πx/L). The initial velocity field
s set to be zero and pressure field is set based on hydrostatic
onditions. Since the analytical solution is available for inviscid
ase, all viscous flux components for this test problem are set to
ero and all boundaries are set to free-slip boundary conditions.
he computational domain is discretized using uniform Cartesian
eshes of coarse (12 × 12), medium (25×25) and fine (50 × 50)

evels. The artificial compressibility parameter, β , is taken as
000. The real time step, ∆t , is taken as 0.01 s and after each
eal time step the level set function is reinitialized using a set
f four reinitialization iterations. For the pseudo time iteration,
he pseudo time step, ∆τ , is calculated using a Courant number,

= 0.9.
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As time progresses, the water surface inside the container
tarts to oscillate. An approximate expression for the time pe-
iod of oscillation for the first mode is obtained in [19] as,
π{gyk tanh(kh)}−

1
2 , where, h = 0.05 m is the average depth of

the water and k = 2π/λ m−1 is the wave number with wave
length λ = 0.2 m. For the present problem configuration, this
time period can be estimated as 0.3739 s. In order to compare
the time period of oscillation of the interface with the analytical
time period, the location of the air–water interface at the left
wall is measured during numerical simulations. The measured
front positions are normalized with respect to the domain length
(L) and plotted with respect to time, for the new reinitialization
approach, in Fig. 17(a) for all the three mesh levels. One can
see from Fig. 17(a) that, as the mesh is refined, the lag in the
interface movement reduces and the profiles converge towards
the analytical results. As described in [19], the presence of the
second mode, with half time period as that of the first mode,
influences the oscillation of the air–water interface by increasing
the amplitude of every even peak to a higher value than that of
the odd peak. This feature can also be observed from Fig. 17(a) for
the fine mesh case. The area errors are quantified using Eq. (37)
for all three mesh levels in the case of the test problem with
the new reinitialization approach and plotted in Fig. 17(b). Here
also one can see that, the area error reduces as the mesh levels
get refined. The Fig. 17(a) and (b) show the mesh convergence
behaviour of the new reinitialization algorithm when applied to
solve incompressible two-phase flow problems. Snapshots of the
air–water interface along with the velocity vectors for the fine
mesh level are shown in Fig. 18.

In order to compare the results with CLS, the low amplitude
sloshing problem is also solved by replacing the new reinitializa-
tion approach with the CLS approach. The air–water interface pro-
files and the area errors of the fine mesh level cases for the new
and CLS are plotted in Fig. 19. One can see from Fig. 19(a) that the
new reinitialization approach matches closely with the analytical
result. Moreover, with the new reinitialization approach, the lag
has been reduced. One can also see from Fig. 19(b) that the area
error is less in the case of the new reinitialization approach.

4.4. Broken dam problem

Next test problem considered is a broken dam problem, re-
ported in [20]. Here, an initial water column of height 2a and
width a is kept at a zero velocity field and subjected to a hy-
drostatic pressure distribution inside a computational domain
bounded between 0 ≤ x ≤ 4a and 0 ≤ y ≤ 4a, where,
a = 0.25 m. Unlike the previous test problem, here the effect
of viscosity is considered. The density and dynamic viscosity for
water is taken as 1000 kg/m3 and 1×10−3kg/m s respectively and



S. Parameswaran and J.C. Mandal European Journal of Mechanics / B Fluids 98 (2023) 40–63

Fig. 17. Front positions and percentage area errors with respect to time for the low amplitude sloshing problem solved on three different mesh levels using the
new reinitialization approach. The analytical result in the subfigure (a) is based on [19].

Fig. 18. Interface evolution of the low amplitude sloshing problem at different time levels from t = 0.0 s to t = 0.4 s solved on the fine level (50 × 50) mesh using
the new reinitialization approach. The velocity vectors are plotted with a relative length of 0.05 grid unit per magnitude of total velocity.

Fig. 19. Front positions and percentage area errors with respect to time for the low amplitude sloshing problem solved using the CLS and the new reinitialization
approaches. The analytical result in the subfigure (a) is based on [19].

53



S. Parameswaran and J.C. Mandal European Journal of Mechanics / B Fluids 98 (2023) 40–63

r

b
t
T
A
t
i
A
u
a
p

c
O
s
p
w
t

Fig. 20. Interface profiles at different time levels, starting from t = 0.3 s up to t = 1.2 s, for the broken dam problem. The velocity vectors are plotted with a
elative length of 0.005 grid unit per magnitude of total velocity.
Fig. 21. The non-dimensional surge front and water column height plotted with respect to the corresponding non-dimensional time scales for the broken dam
problem.
p
s

for air as 1 kg/m3 and 1.8×10−5kg/m s respectively. All the four
oundaries are set to no-slip boundary condition. The compu-
ational domain is discretized into 100 × 100 Cartesian mesh.
he artificial compressibility parameter, β , is taken as 10,000.
s time progresses, due to the presence of gravitational force,
he water column collapses. In order to accurately capture the
nterface movement, a small real-time step of 0.005 s is chosen.
fter each real time step the level set function is reinitialized
sing a set of four reinitialization iterations. For stability reasons,
smaller Courant number of 0.1 is chosen for the computation of
seudo-time step.
Fig. 20 shows the snapshots comparing the air–water interface

omputed using the CLS and the new reinitialization procedure.
ne can see that the surge front, in case of the new reinitialization
cheme, reaches close to the top wall before it falls to the bottom
ool of water. These numerical results show close resemblance
ith the results reported by [20]. Whereas, in case of CLS, the
hin surge front is spoiled due to inaccuracies arising from the
54
reinitialization scheme. In order to compare the numerical results
with experimental data reported in [21], the non-dimensional
surge front, s, and non-dimensional water column height, h, are
lotted with respect to the corresponding non-dimensional time
cales Ts = t

√
2g/a and Th = t

√
g/a respectively in Fig. 21. The

surge front and water column heights are non-dimensionalized
with respect to their initial sizes. Looking at Fig. 21, one can
see an excellent match of both the numerical results with the
experimental data reported by Martin and Moyce in [21]. Finally,
Fig. 22 shows the percentage area errors, computed using Eq. (37),
with respect to time for both the cases. From Fig. 22, one can see
that the area loss is relatively high in both the cases. However,
compared to the CLS, the area loss is relatively less in the case of
the new reinitialization.

4.5. Rayleigh–Taylor instability problem

A Rayleigh–Taylor Instability problem similar to the one re-
ported in [15,22] is considered next. Unlike the previous problem,
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Fig. 22. The percentage area error plotted with respect to time for the broken
am problem.

iscosity plays an important role here. In this problem, a heav-
er fluid of density 1.225 kg/m3 is placed on top of a lighter
luid of density 0.1694 kg/m3 inside the computational domain
ounded between 0 ≤ x ≤ 1 and 0 ≤ y ≤ 4. The dynamic
iscosity for both the fluids are taken to be the same, µ1 =

2 = 3.1304952 × 10−3 kg/m s. The two fluids are initially
eparated by an interface, defined as, y = 2.0 + 0.05 cos(2πx).
The problem is solved on a Cartesian mesh of 32 × 128 finite
volume cells. The top and bottom boundaries are set to no-slip
boundary condition, whereas, the left and right boundaries are
set as symmetric boundary condition. The initial velocity field is
set to be zero and the pressure field is set based on gravity. The
artificial compressibility parameter, β , is taken as 1000 and the
real-time step is taken as 0.01 s. After each real time step the
level set function is reinitialized using a set of four reinitialization
iterations. For stability reasons, the Courant number is chosen as
0.9 for the computation of the pseudo-time step.

As time progress, the top heavy fluid starts to penetrate into
the bottom light fluid resulting the formation of an inverted
mushroom shaped structure. Snapshots at different time levels
during the evolution of the fluid–fluid interface for both the ex-
isting and new reinitialization cases are shown in Fig. 23. Similar
to the previous problem, here also one can see that the new
reinitialization scheme is better in capturing the thin fluid layer
originating from the tips of the inverted mushroom head. Fig. 24
compares the percentage area errors computed using Eq. (37) in
both the cases. One can clearly see a higher area loss for the CLS
case during the later stages of interface evolution.

4.6. Rising bubble problem

The last problem considered in this section is a rising bubble
problem. Unlike previous problems, this one is more challeng-
ing because of the presence of buoyancy, viscosity and surface
tension forces. The rising bubble problem has been extensively
investigated by Hysing et al. [23] using a set of Eulerian Fi-
nite Element based and arbitrary Lagrangian–Eulerian (ALE) type
moving mesh based solvers. Apart from reporting snapshots of
bubbles at different time levels, several parameters measuring the
degree of deformation of the shape of the bubble and its evolution
characteristics in time have been defined in [23] for the purpose
of quantitative benchmarking. The reference solutions for the
rising bubble problem are produced by three teams running ac-
curate numerical simulations independently. These results there-
fore serve as an excellent reference for validating incompressible
two-phase flow codes.

The test problem consists of a circular bubble of diameter,

db = 0.5 m, placed at the lower half of a rectangular domain
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bounded between 0 ≤ x ≤ 1 m and 0 ≤ y ≤ 2 m, initially filled
with a quiescent liquid. Due to the presence of the buoyant force,
the initial circular bubble will start rising. With the interaction of
the surrounding liquid, the initially circular shape of the bubble
gets deformed. The degree of deformation of the circular bubble
depends upon the Reynolds number (Re) and the Eötvös number
(Eo). The Re and Eo are defined as,

e =
ρ2UgL
µ2

(40)

nd

o =
ρ2U2

g L

σ
(41)

where, the characteristic length scale, L = db, and the character-
istic velocity scale, Ug =

√
gdb. Based on the level of difficulty,

wo versions of rising bubble problems are reported in [23]. The
irst one (denoted here as ‘‘Case-1’’) is relatively simple, and the
econd one (denoted here as ‘‘Case-2’’) is more challenging. The
hysical parameters defining the two dimensional rising bubble
est cases are given in Table 3.

In both the cases, the initial velocity field is set to zero and
he initial pressure field is set based on gravity. The left and
ight boundaries are set to free-slip boundary condition and the
op and bottom walls are set to no-slip boundary condition. The
rtificial compressibility parameter, β , is taken as 10,000. The

real-time step is taken as 0.05 s and after each real time step the
level set function is reinitialized using a set of four reinitialization
iterations. For the pseudo time iteration, the pseudo time step,
∆τ , is calculated using a Courant number, ν = 0.9. Numerical
simulations are carried out up to a time level of 4 s. In order to
make a quantitative comparison, three parameters, namely, the
rise velocity, the location of centroid and the circularity of the
bubble are reported in [23]. These parameters are computed as,

Rise Velocity, vc =

∫
Ωb

u · ey dΩb∫
Ωb

dΩb
, (42)

Centroidal Location, yc =

∫
Ωb

xb · ey dΩb∫
Ωb

dΩb
(43)

and

Circularity, ζ =
Pa
Pb

=
Perimeter of area-equivalent bubble

Perimeter of the bubble

=
πda∫

Ω
∥∇ψ∥dΩ

(44)

where,Ω is the computational domain,Ωb is the region occupied
by the bubble, xb is the position vector inside the bubble, ey is the
unit vector parallel to the y-axis and da is the diameter of a circle
with an area equal to that of the bubble with circumference Pb.

4.6.1. Case-1
For the choice of physical parameters of Case-1, the bubble

does not undergo large deformation. The initial circular bubble
first stretches in the horizontal direction and, finally, settles down
to an ellipsoidal profile as it reaches its terminal speed. Numerical
simulations are carried out on a Cartesian mesh of 80 × 160 finite
volume cells. The bubble profiles at different time levels for both
the CLS and the new reinitialization cases are shown in Fig. 25.
One can see that the bubble profiles for the CLS and the new
reinitialization cases are quite similar and match very well with
the results reported in [23]. In order to make a close comparison,
the terminal shape of bubbles in both the cases are plotted in
Fig. 26 along with the reference bubble profile of [23]. One can see
from Fig. 26 that the bubble profiles of both the CLS and the new
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Fig. 23. Interface profiles at different time levels, starting from t = 0.8 s up to t = 1.4 s, for the Rayleigh–Taylor instability problem. Subfigures from (a) to (e)
orrespond to the CLS scheme and from (f) to (j) correspond to the new reinitialization scheme.
Table 3
Physical parameters defining the two dimensional rising bubble test cases.
Test case ρ2 ρ1 µ2 µ1 g σ Re Eo ρ2/ρ1 µ2/µ1

Case-1 1000 100 10 1 0.98 24.5 35 10 10 10
Case-2 1000 1 10 0.1 0.98 1.96 35 125 1000 100
reinitialization schemes match very well with the reference bub-
ble profile. The rise velocity, centroid location and the circularity
of the rising bubble are plotted with respect to time in Fig. 27.
Here also, both the CLS and the new reinitialization results match
closely with the reference plots. Finally, the percentage area error,
computed using Eq. (37), is plotted with respect to time in Fig. 28.
It can be noticed that the area error is relatively less for the new
reinitialization case compared to that of CLS.

4.6.2. Case-2
Unlike the previous case, a large density ratio in this case

esults the bubble to deform more and acquire a dimple cap
rofile with thin elongated filament like structures originating
rom both sides. Due to the complex shape, it is relatively difficult
o capture the bubble profile in Case-2 as compared to the Case-
. Numerical simulations are carried out on a Cartesian mesh of
56
80 × 160 finite volume cells. The snapshots of bubble profiles at
different time levels for both the CLS and the new reinitialization
cases are shown in Fig. 29. One can clearly see from Fig. 29 that
the elongated filament structure is not captured very well in
case of the CLS case. Whereas, a better profile of the elongated
filament structure is captured in case of the new reinitialization
method. The rise velocity, centroid location and circularity of the
bubble are plotted with respect to time in Fig. 30. One can see
that the results for the new reinitialization scheme show better
match with the reference results. Finally, percentage area errors,
computed using Eq. (37), are plotted in Fig. 31. Here also, one can
see that, the area error for the new reinitialization scheme is less
compared to the area error in case of the CLS.

Finally, in order to demonstrate the ability of the new reini-
tialization scheme to deal with complex meshes, the problem is
also solved on an unstructured mesh consisting of 23,331 finite
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Fig. 24. The percentage area error plotted with respect to time for the
Rayleigh–Taylor instability problem.

Fig. 25. Bubble profiles from t = 0 s up to t = 4 s for the rising bubble problem
Case-1).

Fig. 26. Enlarged bubble profiles at t = 3 s for the rising bubble problem
Case-1).
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volume cells of triangular and quadrilateral shapes. Fig. 32 shows
the unstructured meshes considered for this case. Due to the
clustering of cells in the bubble path, one may expect a better
result in this case compared to the structured mesh case. The
snapshots of bubble profiles at different time levels for the new
reinitialization case on unstructured mesh are shown in Fig. 33.
One can see from Fig. 33 that the elongated filament structure is
better captured in this case. The bubble profiles captured using
the new reinitialization approach solved on unstructured mesh
show a close resemblance with the fine mesh results reported
in [23]. The rise velocity, centroid location and circularity of the
bubble are plotted with respect to time in Fig. 34. One can see that
the results for the new reinitialization scheme on the unstruc-
tured mesh show very good match with the reference results.
Finally, the percentage area errors, computed using Eq. (37), are
plotted in Fig. 35. In comparison with the structured mesh results,
the new reinitialization method solved on unstructured mesh
shows much less area error.

5. Conclusion

A new approach to reinitialize the level set function for the
CLS method is formulated in this paper. To start with, the existing
artificial compression based reinitialization equation is examined
carefully in order to identify the term responsible for the un-
wanted movement of the interface contour. After isolating and
removing a curvature dependent velocity term, that is responsible
for wrongly moving the interface contour, the reinitialization
equation is revised. The remaining terms in the reinitialization
equation are then carefully replaced with equivalent terms that
do not involve contour normal vectors. Unlike the compression
and diffusion fluxes present in a typical artificial compression
approach, the newly reformulated approach has a level set sharp-
ening term, responsible for the narrowing the level set profile,
and a balancing term in order to counteract the effect of sharp-
ening. The combined effect of sharpening and balancing restores
the level set function without causing any unwanted movement
to the interface contour. Due to the absence of terms involving
contour normal vectors, the susceptibility towards the formation
of unphysical fluid patches during the reinitialization process has
been completely eliminated in the new reinitialization procedure.

In order to evaluate the performance of the new reinitializa-
tion approach, three types of numerical test cases are carried out.
The in-place reinitialization problems demonstrate the interface-
preserving property and the superior convergence behaviour of
the new reinitialization approach. The area and shape errors of
the new approach are quantified using a set of scalar advection
based test problems. To evaluate the performance on more prac-
tical problems, a set of standard incompressible two-phase flow
problems, starting from an inviscid test case to complex test cases
involving viscous and surface tension forces, are solved. Finally,
in order to demonstrate the ability to deal with complex mesh
types, an incompressible two-phase flow problem is also solved
on an unstructured mesh consisting of finite volume cells having
triangular and quadrilateral shapes. Following are some of the
attractive features of the new reinitialization approach:

• The new reinitialization approach does not suffer from the
two major drawbacks of the existing artificial compres-
sion based reinitialization procedure, namely, the unwanted
curvature-dependent movement of the interface contour
and strong sensitivity towards numerical errors leading to
the formation of unphysical fluid patches. As a result, even
a very thin and elongated fluid element like structures in
two-phase flow problem can be easily captured.
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Fig. 27. The rise velocity, centroid location and circularity plotted with respect to time for the rising bubble problem (Case-1).
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Fig. 28. The percentage area error plotted with respect to time for the rising
bubble problem (Case-1).

• The steady state form of the new reinitialization equation
exactly satisfies the hyperbolic tangent profile of the level
set function. The method is stable and has better numerical
convergence properties.

• With less complex terms in the new reinitialization equa-
tion, one can choose a larger time step, approximately by a
factor of 4/h, in comparison with the allowable time step
of an artificial compression based approach. In addition,
each reinitialization iteration of the new reinitialization ap-
proach is around 17 times faster than that of the original
CLS approach, aiding an overall reduction in computational
efforts.

• The new framework is applicable to unstructured meshes
consisting of finite volume cells having triangular and quadri-
lateral shapes, increasing the scope for solving a wide range
of practical problems.

With enhanced accuracy and improved ability to deal with com-
plex mesh types, the proposed reinitialization approach can be
58
efficiently used in solving real life incompressible two-phase flow
problems.
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Appendix A. Central least square estimation of level set gradi-
ents

The second term in Eq. (17) involves computation of level set
gradient terms.

|∇ψ |i =

√(
∂ψ

∂x

)
i
+

(
∂ψ

∂y

)
i

(A.1)

hese terms are evaluated here using a central least square ap-
roach. In order to construct cell centre derivatives, a stencil
onsisting of vertex based neighbours, as shown in Fig. A.36,
s considered. Using Taylor series expansion, the neighbour cell
alues, ψj, of the level set function are expressed in terms of the
alue at the cell i, as,

j = ψi + (xj − xi)
(
∂ψ

)
+ (yj − yi)

(
∂ψ

)
. . . (A.2)
∂x i ∂y i
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here, (xi, yi) and (xj, yj) are locations of the centroids of cell i
nd centroid of the neighbour cell j respectively. Upon truncating
igher order terms (after the third order term) and re-arranging,
qs. (A.2) can be written as,

ψ = S dψ (A.3)

here,

ψ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ1 − ψi
ψ2 − ψi
. . .

. . .

ψl − ψi

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ; S =

⎡⎢⎢⎢⎣
x1 − xi y1 − yi
x2 − xi y2 − yi
. . . . . .

. . . . . .

xl − xi yl − yi

⎤⎥⎥⎥⎦ ;

dψ =

⎧⎨⎩
∂ψ

∂x

∂ψ

∂y

⎫⎬⎭
; ; The overdetermined system of Eq. (A.3) can be solved as,

dψ =
(
STS
)−1 ST∆ψ (A.4)

losed-form expressions for the derivatives can be obtained by
implifying equation (A.4) as,(
∂ψ

∂x

)
i
=
ℓ22r1 − ℓ21r2

G
(A.5a)(

∂ψ

∂y

)
i
=
ℓ11r2 − ℓ12r1

G
(A.5b)
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where

ℓ11 =

l∑
j=1

(xj − xi)2, ℓ22 =

l∑
j=1

(yj − yi)2,

12 = ℓ21 =

l∑
j=1

(xj − xi)(yj − yi)

1 =

l∑
j=1

(xj − xi)(ψj − ψi), r2 =

l∑
j=1

(yj − yi)(ψj − ψi),

= ℓ11ℓ22 − ℓ212

ppendix B. Overview of existing improvements in the reini-
ialization scheme

.1. Efforts towards arresting undesired movement of interface con-
our

In order to alleviate the problem of undesired movement of
nterface contours, localization of the reinitialization process is
uggested in the literature. In [7], a localized version of the artifi-
ial compression procedure (the Localized CLS (LCLS) approach)
s developed and used along with a Constrained Interpolation
rofile (CIP) method. Here, a parameter, β , is introduced in order
o vary the degree of interface compression and dissipation over
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Fig. 30. The rise velocity, centroid location and circularity plotted with respect to time for the rising bubble problem (Case-2).
Fig. 31. The percentage area error plotted with respect to time for the rising
bubble problem (Case-2).

the domain. The local sharpening equation, as reported in [7], can
be written as,
∂ψ

∂τr
+ β∇ · (ψ(1 − ψ)n) = βε∇ · (∇ψ) (B.1)

ne can see that the key difference between Eq. (B.1) and the
riginal reinitialization equation by Olsson et al. in [1] is the
ntroduction of a new term β multiplied to the compression and
iffusion terms. The term β depends upon a diffusive index, α, of
, as,

=

⎧⎪⎨⎪⎩
βmin for α ≤ 0,
1−βmin
αsat

α + βmin for 0 < α ≤ αsat, (B.2)

1 for α ≥ αsat,

60
Fig. 32. The unstructured mesh used for solving the rising bubble problem
(Case-2). The mesh consists of a total of 23,331 finite volume cells with
triangular and quadrilateral shapes.

where, the diffusive index, α is computed as α = (∇(u⃗ · n) · n).
The parameters αsat and βmin are obtained based on numerical
experiments. Through the parameter, β , the degree of reinitial-
ization (that is, the amount of compression and diffusion) in this
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Fig. 33. The bubble profiles at different time levels starting from t = 0 s up to t = 4 s for the rising bubble problem (Case-2) solved on unstructured mesh.
Fig. 34. The rise velocity, centroid location and circularity plotted with respect to time for the rising bubble problem (Case-2).
pproach is varied over the computational domain. In regions
here α ≤ 0, the degree of reinitialization will be significantly

low.
The localization procedure developed in [4] is, however, differ-

nt from [7]. Unlike the β parameter in [7], here the compression
and diffusion terms are multiplied using a spatially and temporar-
ily varying factor α̃. Upon expanding, this α̃ will get absorbed into
the pseudo-time variable, τr , and the reinitialization equation can
e written as,
∂ψ

∂τ̃r
+ ∇ ·

[
(ψ(1 − ψ)n) − (ε (∇ψ · n) n)

]
= 0 (B.3)

here, τ̃r = α̃τr , and the α̃ is computed by solving n · ∇α̃ = 0
sing a fast marching method.
61
B.2. Efforts towards removing unphysical fluid patch formation far
away from the interface

One of the initial attempt to overcome the issue of the unphys-
ical fluid patch formation far away from the interface is to com-
pute a better conditioned contour normal vector. Instead of com-
puting the contour normal vector from the ψ-field as suggested
in the artificial compression based reinitialization approach of
Olsson et al. [2], the Accurate Conservative Level Set (ACLS)
method [5] computes the contour normal vectors from the stan-
dard signed distance function (φ). Here, the φ-field is computed
from the ψ-field using a standard fast marching method.

In the reinitialization procedure of [3], the gradient of the
compression and diffusion terms are directly projected onto the
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Fig. 35. The percentage area error plotted with respect to time for the rising
bubble problem (Case-2).

Fig. A.36. A schematic representation of a triangular shaped finite volume cell
i and its vertex based neighbours, denoted as j.

ontour normal vector directions, as,

∂ψ
= n · ∇

[
ε|∇ψ | − ψ(1 − ψ)

]
(B.4)
∂τr
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Further, the contour normal vectors are computed using a map-
ping function φ(α), as n =

∇φ(α)
|∇φ(α)| . The mapping function φ(α) is

defined as,

φ(α) =
ψα

ψα + (1 − ψ)α
(B.5)

where, the parameter α = 0.1.
In [10], a reformulated version of the artificial compression

based reinitialization procedure of Olsson et al. [2] is developed.
Upon differentiating Eq. (1) in space and taking dot product with
n (where, n =

∇ψ

|∇ψ |
=

∇φ

|∇φ|
), we can write,

∇ψ · n =
ψ(1 − ψ)

ε
|∇φ| (B.6)

In [10], Eq. (B.6) is substituted in the original reinitialization
equation by Olsson et al. in [2], to get the reformulated equation,

∂ψ

∂τr
= ∇ · [ψ(1 − ψ)(|∇φ| − 1)n] (B.7)

Further, in order to have a better convergence property, the φ in
q. (B.7) is replaced with a mapping function, φmap, defined as,

map =
(ψ + ϵ)γ

(ψ + ϵ)γ + (1 − ψ + ϵ)γ
(B.8)

here, the parameters ϵ and γ are obtained through a set of
umerical experiment in [10] as, 5 · 10−15 and 10−5 respectively.
he final reinitialization equation of [10] can be written as,

∂ψ

∂τr
= ∇ · [ψ(1 − ψ)(|∇φmap| − 1)nΓ ] (B.9)

here, nΓ = ∇φmap/|∇φmap|.
In [11], two modifications of [10] are proposed. Firstly, a

tatic signed distance function computed from a fast marching
ethod is used for the computation of the contour normal vector

nstead of the φmap as used in [10]. Secondly, in order to make
ure that the ψ-field is always bounded between 0 and 1 while
sing with non-TVD schemes, the approach in [11] replaces the
(1 − ψ) term given in [10] with 1

4 cosh2( φinv2ε )
, where, φinv is

computed by taking the inverse of Eq. (1) as, φ = ε ln
(

ψ
)

inv 1−ψ .
Table B.4
Summary of the existing and the new reinitialization formulations.
Method Reinitialization equation Additional equations

CLS [2] ∂ψ

∂τr
= ∇ ·

[
(ε (∇ψ · n) n)− (ψ(1 − ψ)n)

]
n =

∇ψ0
|∇ψ0 |

(2007)

ACLS [5] ∂ψ

∂τr
= ∇ ·

[
(ε (∇ψ · n) n)− (ψ(1 − ψ)n)

]
n =

∇φFMM
|∇φFMM |

(2008)

CLS [3] ∂ψ

∂τr
= n · ∇

[
ε|∇ψ | − ψ(1 − ψ)

]
n =

∇φ(α)
|∇φ(α)| ; φ(α) =

ψα

ψα+(1−ψ)α

(2010)

LCLS [7] ∂ψ

∂τr
= βε∇ · (∇ψ)− β∇ · (ψ(1 − ψ)n) n =

∇ψ

|∇ψ |
; β = f (α)

(2012)

LCLS [4] ∂ψ

∂τ̃r
= ∇ ·

[
(ε (∇ψ · n) n)− (ψ(1 − ψ)n)

]
n =

∇ψ

|∇ψ |
; τ̃r = α̃τr ; n · ∇α̃ = 0

(2014)

CLS [10] ∂ψ

∂τr
= ∇ ·

[
ψ(1 − ψ)(|∇φmap| − 1)nΓ

]
nΓ =

∇φmap
|∇φmap |

; φmap =
(ψ+ϵ)γ

(ψ+ϵ)γ+(1−ψ+ϵ)γ

(2015)

CLS [11] ∂ψ

∂τr
= ∇ ·

[
1

4 cosh2
(
φinv
2ε

) (|∇φinv · n| − 1)n
]

n =
∇φFMM
|∇φFMM |

; φinv = ε ln
(

ψ

1−ψ

)
(2017)

SCLS [8] ∂ψ

∂τr
= −∇ ·

(
(ψ(1 − ψ)m) + (ε(∇ψ · m)m) + ((1 − |m|

2)ε∇ψ)
)

m =
ε∇ψ(

ε2|∇ψ |2 + α2 exp(−βε2|∇ψ |2)
)1/2

(2018)

New ∂ψ

∂τn
= θ [−ψ(1 − ψ)(1 − 2ψ) + ε(1 − 2ψ)|∇ψ |] No additional equations
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T
a

w

he reinitialization equation as proposed in [11] can be written
s,

∂ψ

∂τr
= ∇ ·

[
1

4 cosh2( φinv
2ε

) (|∇φinv · n| − 1)n
]

(B.10)

In the Stabilized Conservative Level Set (SCLS) approach of [8],
the contour normal vector is replaced with an alternative normal
vector with its magnitude diminishes away from the interface
contour. The new reinitialization as proposed in [8] can be written
as,

∂ψ

∂τr
= −∇ ·(ψ(1−ψ)m)+∇ ·(ε(∇ψ ·m)m)+∇ ·((1−|m|

2)ε∇ψ)

(B.11)

here, m =
ε∇ψ(

ε2|∇ψ |2+α2 exp(−βε2|∇ψ |2)

)1/2 and α and β are con-

stants defining the regions where the vector m is approximately
a unit vector.

All the above reinitialization equations and the additional
equations are summarized along with the newly proposed reini-
tialization equation in Table B.4.
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